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Treating a simple liquid metal as a dense two-component plasma consisting of ions and electrons, we 
derive a rather general screened interionic potential within the framework of the thermodynamic Green 
function technique. The resulting potential incorporates both ions and electrons into the screening and 
contains pseudopotential terms of any order. Similar to Hubbard for the electrons, we derive also a static 
ion local-field correction which accounts for ion-ion correlation effects in the Montroll-Ward approxima- 
tion. The interionic potential in the case of liquid Cs is strongly modified in comparison with the effective 
potential derived within second-order pseudopotential theory. 

KEY WORDS: Two-component plasma, Green functions, liquid structure 

1 INTRODUCTION 

One way to obtain a pair potential for liquid metals is to invert measured structure 
factors as was first done by Johnson and March and Johnson et al.' In order to 
derive theoretically an effective ion-ion potential for a liquid metal consisting of ions 
and nearly free electrons, second-order pseudopotential theory' is often used. The 
result is well known and reads: 

where Ki(q) is a suitable pseudopotential for the electron-ion interaction, &(q) 
describes the pure Coulomb interaction between the electrons and Eee(q,  0) is the static 
dielectric function of the electron sub-system. Nevertheless, the derivation of the 
potential Eq. (1) " . . . seems to be rather obscure" according to Abe3. 
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104 K. SCHMIDT, W. D. KRAEFT AND N. H. MARCH 

Recently, Belyayev, Bobrov and Trigger4 discussed the quasiparticle spectrum and 
maxima of dynamic ion structure factors in liquid metals. They considered a liquid 
metal as a dense two-component plasma and obtained as one result the effective 
ion-ion potential given above in the framework of the temperature Green functions 
developed by Abrikosov et al. '. 

It has to be mentioned that although the above assumption about the composition 
of the liquid metal is correct for a simple metal near the melting point, it has been 
shown experimentally (see e.g. 6 and references quoted therein) that by expanding 
liquid alkali metals, i.e. by heating the liquids up to the critical point, the systems 
undergo drastic changes in their electronic properties and a metal-nonmetal transi- 
tion occurs near the liquid-vapour critical point. This occurrence of the metal- 
nonmetal transition in expanded liquid alkali metals implies drastic changes in the 
interatomic forces as the density of the fluid is decreased, especially when the 
metal-nonmetal transition is approached. Model calculations7 indicate that these 
changes are mainly due to atoms or neutral and charged cluster formation, respec- 
tively, in the vicinity of the critical point, i.e. drastic changes in the composition of 
the fluid. In order to construct an effective pair potential for expanded liquid metals, 
the effects of cluster formation and changes due to the screening of the ion cores 
should therefore be taken into account. 

The aim of this paper is to obtain a general expression for a screened (effective) 
ion-ion potential for a liquid metal consisting of ions and electrons only (Section 2). 
One approximation of this expression yields a potential in the form of Eq. (1). 
Self-consistent to the potential and in the same framework it is possible to derive 
suitable dielectric functions for the screening such as electron sub-system dielectric 
functions including the Hubbard'--or the Geldart-Vosko local-field correction'. In 
analogy to these electron local-field corrections we construct a simple approximate 
expression for the ion local-field correction. Section 3 is devoted to some numerical 
investigations of the screened potentials, derived in Section 2, with respect to different 
local-field corrections. 

2 SCREENED ION-ION POTENTIAL 

Regarding a liquid metal as a dense two-component plasma of ions and electrons 
the thermodynamic Green function technique" yields a systematic access to a 
dynamically screened ion-ion potential. In this framework the derivation of a 
self-consistent system of equations for the one-particle Green function G, the self 
energy C, the polarization function 0 and the screened potential V s  gives the 
following equation for V": 

where a , .  . d denote the different particle species (ions i, electrons e), 1 stands for the 
space-time point ( r I ,  tl), 2 for (rz,  tz) and so on, fl = l/K,T, and V,b is the correspond- 
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ION-ION POTENTIAL FOR LIQUID METALS 105 

ing unscreened potential. The sum runs over all species (e, i) and spins (ne, oi). The 
polarization function n , d  has to be determined from the following equation: 

with 

C,( 1’2’) = Cc( 1’2’) - XF( 1’2’) = ih V:,( l’2’)Gc( 1’2‘) 

where Cc stands for the full and C: for the Hartree self energy, respectively. 
The effective external field Ueff (mean field of interaction) is a sum of the external 
field U which produces an inhomogeneity in the system and of the Hartree self energy. 
The one-particle Green function G, is a solution of the Dyson equation: 

G: describes free particles without interaction. 
Equation (2) may be expressed by Feynman diagrams. 

In the thermodynamic equilibrium the quantities V’, 0 and G are quasiper- 
iodic along the imaginary time axis (Kubo-Martin-Schwinger condition). Therefore, 
after transition to the momentum Matsubara frequency representation, analytic 
continuation and considering a potential &, local in time, i.e. Kb(12) = 
Eb(rl - r,)6(t, - t2), we obtain from Eq. (2) with c1 = b = i (see 10): 

w is a complex frequency which comes from the analytic continuation of the functions 
I/‘ and (7 into the complex frequency-plane (Bose-like Matsubara frequencies 
52, = inv/hfi; u = 0, +2, +4,. . . ; R, + w). hq denotes the particle momentum. 

It is obvious that an additional equation for the screened ion-electron potential 

P.C.L.-E 
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106 K. SCHMIDT, W. D. KRAEFT AND N. H. MARCH 

V:e is needed to determine Vfi in Eq. (7). In analogy to (7) one obtains from (2) for V;e: 

Inserting (8) into (7) and rearranging the resulting equation with respect to V;i(q, w), 
yield a genera1 expression for the dynamically screened ion-ion potential for liquid 
metals which is modified on account of many-particle effects and which contains 
Ke-powers of any order because of the nonvanishing polarization functions. This can 
easily be seen from the equation obtained (here without spin summation) 

and after expanding the denominator F(q, w) in powers of &(q) or Ve(q), respectively. 
Note that for a system in which the ions and electrons interact via pure Coulomb 
potentials, i.e. 

(Z-charge number), (9) reads as follows: 

with the liquid metal dielectric function 

In order to solve (9) including spin summation one has to solve the whole self- 
consistent system of the Eqs. (2), (3), (5) and (6) approximately to obtain a screened 
(effective) potential that contains the main effects in simple liquid metals such as 
strong electron correlations, degeneracy and ion-core effects. 

The first approximation that can be chosen was given by Belyayev et d4. 
According to the pseudopotential theory’ (weak ion-electron interaction, nearly free 
electron model), the contribution of the polarization functions nei (q ,  w) and nie(q,  w) 
can be neglected. In this way an expression for Vfi(q, w) from (9) with &,(q) = Vei(q) 
and including spin summation is obtained which is still more general than (1). 
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ION-ION POTENTIAL FOR LIQUID METALS 107 

Here we have used the following abbreviation for the ion and electron polarizabilities 
which corresponds to the usual dielectric function for sub-systems of electrons or 
ions, respectively (a = e, i): 

Introducing the approximation nii(q, w) = 0 into (13), a screened potential in 
Fourier space in the form of (1) is derived immediately: 

where dynamic effects are still taken into account because of the w-dependence of 
the dielectric function. 

In the Appendix, we show how electron-elelectron and ion-ion polarizabilities can 
be derived consistently within the framework adopted above. Below, we shall present 
some results for interionic potentials for different thermodynamic states. 

3 STATIC DIELECTRIC FUNCTIONS AND EFFECTIVE INTERIONIC 
PAIR POTENTIALS FOR LIQUID Cs 

First we note that the static RPA polarization function for noninteracting particles 
is given by'2: 

(a = e, i), with jJk) and E,(k) representing the Fermi function and the kinetic energy, 
respectively. Under completely degenerate conditions ( T =  0 K), as is approximately 
the case for metal electrons in the vicinity of the melting point, (-):;IePA reduces to: 

(q-Fermi wave number; me--electron mass). Because of their higher mass compared 
with electrons, the metal ions represent, in the density-temperature region from the 
melting up to the liquid-vapour critical point, classical nondegenerate particles. Thus, 
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108 K .  SCHMIDT, u'. D. KRAEFT AND N. H. MARCH 

Eq. (16) yields for the ion-ion polarization function' 3 :  

F,---confluent hypergeometric function; m,-ion mass; ni-ion number density). 
For simplicity, oi = 0 was taken in all calculations. 

Using the relations (16H18) we have investigated the different polarizabilities and 
screened ion-ion potentials for liquid Cs at its melting point (T, = 301.55 K, 
pm = 1.8355 g/cm3, I ,  = 5.786; r, = d/a,, d = (3/4 r ~ n ~ ) ~ ' ~ ,  a, = h2 4n~,/rn,e~). Here 
the assumption of Cs' ions ( Z  = 1) and electrons is entirely realistic. Although this 
assumption, as discussed above, is by no means as well established at lower densities, 
it has proved useful, for comparison purposes, to carry out calculations on the basis 
of it also near the critical point' ( T =  1923 K, p = 0.59 g/cm3, rs = 8.446). 

Based on the Appendix, we have first calculated, for better comparison with the 
results of other authors, the inverse static dielectric functions l / ~ ~ ~ ( q ,  0) (curves 1 4  
of Figures 1 and 2) and l/Ell(q, 0) (curves 5-6) for the two thermodynamic states 
discussed immediately above. 

The different curve numbers denote different local-field corrections (1-Hubbard', 
Eq. (A9); 2-Geldart and Vosko', Eq. (A10); 3-RPA (ge(q)  = 0); 4-fitting formula 

Inverse dielectric functions 

l'* I--- 

-0.2 I 1 I I I I I I I I  I I I 1 1 1 1 1 1  I I I 1 I I l l 1  I I 1 1 1 1 l l 1  I I 1 1 1 1 1  

0 , O l  0,1 1 10 100 1000 

9 WA1 
Figure 1 Inverse static electronic and ionic dielectric functions l/Eee(q, 0) (curves 14) and l /ci i(q,  0) (curves 
1-6) for rr = 5.786 with respect to different local-field corrections: I-Hubbards; 2 4 e l d a r t  and Vosko'; 
3-RPA (g&) = 0); &fitting formula by Ichimaru and Utsumi"; 5-RPA (g i (q)  = 0); &-formula (A21) 
of the present paper with ui = 0. 
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ION-ION POTENTIAL FOR LIQUID METALS 109 

inverse dielectric functions 

Im2 1 

6 

Cs r,=8.446 

-0,2 - 

- 0,4 I I I 1 I l l l l  I I I I I I I I I  1 I I I I I I I I  I I I l l l l  

0 , O l  0,l 1 10 100 
9 IVAl  

Figure 2 
5-6) for rs = 8.446 with respect to different local-field corrections (notation as in Figure 1). 

Inverse static electronic and ionic dielectric functions l/eee(q, 0) (curves 1-4) and 1 / E i t ( q ,  0) (curves 

of Ichimaru and Utsumi"; 5-RPA (gi(q) = 0); 6-formula (A21) of the present 
paper). The differences between the electron and ion sub-system dielectric functions 
come from the different masses as well as from the different local-field corrections 
just cited. 

Turning to the effective ion-ion potentials, calculations have been made using the 
Ashcroft empty core p ~ t e n t i a l ' ~  in all cases. At the melting point R,  was taken as 
1.435 A while near the critical point R, was chosen to be 2.166 A. 

At the melting point, the main conclusion, based on the Fourier transform of Eq. 
(15), is that the statically screened interionic potential for Cs is very sensitive to the 
changes in the electronic screening functions (see e.g. 15 in the case of all alkali metals). 
Thus, RPA gives practically no binding in the effective ion-ion potential V;i(i(r), 
Geldart and Vosko' a minimum at 5.7A with a depth of -0.04eV, the Ichimaru 
and Utsumi" prescription moves the minimum inwards to 5.3 A and deepens the 
potential just slightly. The deepest potential Vg(r) we calculated at the melting point 
comes from Hubbard* screening (depth -0.1 eV, minimum at 5.3 A). 

The features near the liquid-vapour critical point are similar to those at the melting 
point. RPA gives practically no binding, Geldart and Voskog yields a minimum of 
-0.04eV at 8.0& Ichimaru and Utsumi" a minimum at 7.6A with a depth of 
-0.05 eV and Hubbards deepens the potential to -0.08 eV at the same position 
(7.6 A). 

Note that the ion-ion potential Vqi(r), based on the Fourier transform of Eq. (13) 

P.C.L.-F 
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110 K .  SCHMIDT, W. D. KRAEFT AND N. H.  MARCH 

including the ion local-field correction (A21) and the Ichimaru and Utsumi electron 
screening' ', produces a minimum of -0.02 eV at 2.4 A near the critical point whereas 
it gives a potential depth of -0.09 eV at 0.5 

While, unfortunately, the available approximate structural theories are not suffi- 
ciently accurate (though for refinement see below) for quantitative answers", 
nevertheless at T =  1923 K they give minima near 5.5 A and depths of -0.05 to 
-0.06eV (see 16). In the discussion in Section 4 below, we shall comment on the 
relation to the 'diffraction' potential @(rf obtained by inverting the structure factor 
S(q)  as measured by Hensel et aL6. 

at the melting point. 

4 DISCUSSION AND SUMMARY 

In order to investigate separately the contributions of the ions and electrons to the 
screening of the effective ion-ion potential (13), we have additionally evaluated the 
potential 

where the electronic screening is neglected and E i i ( q ,  0) is given by Eq. (A20). It is 
then found that the electrons determine mainly the long-range part of the ion-ion 
interaction (Friedel oscillations) whereas the effective collision diameter remains 
relatively unchanged, i.e. the short-range part of the ion-ion interaction is determined 
by the ions themselves. 

At the melting point, the ion cores and potential wells, calculated with Eqs (13) 
and (19), are nearly the same. The differences between these two potentials increase 
gradually with increasing temperature and decreasing density. It is therefore very 
likely that, by using (13), the ions are overestimated in the screening mechanism. We 
believe that their contribution could be compensated to a certain extent by the 
neglected terms nei and nie. The latter should be investigated in detail. 

A comparison of Figures 1 and 2 (see Figure 3) indicates that the inverse ion and 
electron sub-system dielectric functions approach each other and move to smaller 
wave numbers q with increasing temperature and decreasing density. Thus, in a high 
temperature-high density plasma region of several thousand Kelvin and densities 
about 10'6-10'8 per cm3 the differences between the potentials (13) and (15) vanish 
gradually. 

It is also relevant to note here that the consideration of the ion spin oi leads only 
to a prefactor in the ion local-field correction which causes a shifting of the function 
1 / ~ ~ ~ ( 4 , 0 )  to the corresponding RPA expression (curve 5 in Figures 1 and 2) and 
therefore to a shifting of the screened interionic potential (13) such that the effective 
collision diameter becomes larger and the potential depth smaller. 

In conclusion, let us return to the relation between electron theory and diffraction 
@(r)'s. For one case, liquid metal sodium just above its freezing point, Perrot and 
March" have brought electron theory into direct contact with the diffraction 
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inverse dielectric functions 

lS2 I--- 
1 

0,8 

0,6 

0 

-0,2 

I I I I I I I I I  I I I I I l l l l  I I I I I l ' l j  -0,4 ' 
011 1 10 100 

9 WiI  
Figure 3 Inverse static dielectric functions l/eee(q, 0) with the electron local-field correction according to 
Ichimaru and Utsumi" (curves 4a and 4b) and 1/.qi(q, 0) with the ion local-field correction according to 
formula (A21) (ai = 0) of the present paper (curves 6a and 6b) at r, = 5.786 (a) and r, = 8.446 (b). 

potential obtained by Reatto et al. 1 9 .  In the work of Reatto et al., the important new 
step was to transcend approximate liquid structural theories by employing computer 
simulation to iterate to the 'final diffraction potential'. It is worth noting also, in 
connection now with electron theory, that for liquid Na, and also in unpublished 
work" on K near freezing, that the method of Perrot and March has avoided 
uncertainties in the choice of a pseudopotential by solving for the displaced valence 
electron screening charge around a Na' or K +  ion embedded in an originally uniform 
bath of electrons of densities appropriate to these two liquid metals at freezing. The 
input information here, in addition to these densities from experiment, was the atomic 
number (e.g. 11 for Na) and a prescription in a local density approximation for the 
exchange and correlation potential V',(r). All the main features of the diffraction 
potential of Reatto et al. for liquid Na at freezing were reproduced by the electron 
theory @(r) of Perrot and March. 

However, we are still some way from making such comparisons for the heavy 
liquid alkali metal Cs considered here. It therefore remains of considerable interest 
to attempt to 'tighten up' considerations on (a) the choice of pseudopotential, (b) the 
choice of electronic screening functions within the framework proposed here based 
on Eq. (15) and (c) the 'fine tuning' of @(r)  which might possibly arise from 
contributions from ion screening. In connection with (c), we believe that with the 
approximations we have developed to date, ion screening is overemphasized. There- 
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112 K. SCHMIDT. W. D. KRAEFT AND N. H. MARCH 

fore, it seems clear that the main difficulties in applying the present theory to liquid 
metal Cs and its effective ion-ion potential still rest on the uncertainties (a) and (b) 
noted immediately above. 

Acknowledgements 

One of the authors ( K .  S.)  would like to thank Prof. F. Hensel and Dr. R. Winter (Marburg) for hospitality 
at the lnstitut for Physical Chemistry and for many useful discussions. Another of us (N. H. M.) is grateful 
to Mr. J.  A. Ascough for numerus valuable discussions on the usefulness of 'diffraction' potentials for Cs 
along the liquid-vapour coexistence curve. obtained by inversion of the measured S(q)'s using approximate 
liquid structural theories. 

APPENDIX: ELECTRON-ELECTRON AND ION-ION 
POLARIZATION FUNCTION 

In the Appendix we want to give a derivation of the electron polarizability 
~,,(q, w )  - 1 for strongly correlated and highly degenerate electron liquids at metallic 
densities, where rs 2 1, including the Hubbard* and the Geldart-Vosko local-field 
correction' in the framework of the thermodynamic Green function technique". This 
study yields an insight into the procedure of the derivation of local-field corrections 
which is useful for the construction of an ion polarizability. 

Since the Fermi energy of the electrons is much greater than the thermal energy 
of the ions in many of the practical cases, we may invoke the adiabatic approximation 
for the motion of the electrons, so that only the static part E,,(q, 0) enters the screening 
of the interionic potential (see 11). 

The starting point of our considerations is Eq. (3) for the polarization function 
n,,(4343) of the electron sub-system. At metallic densities one attempts to go beyond 
the RPA, which is given by the first term on the right-hand side of (3), by taking 
account of exchange and Coulomb correlation effects via the electron self energy 
ze(l' 2'). The schemes proposed by Hubbard' and Geldart and Vosko' consider 
exchange effects only. This corresponds to the Hartree-Fock approximation EFF( 1'2') 
of the self energy in (5 ) ,  where the integral term is therefore neglected and the screened 
electron-electron potential is replaced by an unscreened one. 

Ec(1'2') z ZyF(1'2') = ifil&(l'2')Ge(1'2') = . ( A l )  
1' 2 '  

The functional derivative of the Hartree-Fock self energy (Al) with respect to the 
effective external field UZ"(33) (vertex function) yields from (3), together with the 
definition of the electron-electron polarization function" 

6Ge(1'2') n,,,1~3) - 
6 u:"( 3 3)' 
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ION-ION POTENTIAL FOR LIQUID METALS 113 

an integral equation for the latter: 

ne,(4343) = - Ge(43)G,(34) + ih 
- ihp 

dl' d2' Ge(41')Lg1'2')nee( 1'3 2'3)Ge(2'4). 

('43) 

The iterative solution of this integral equation can be expressed by Feynman 
diagrams and reads: 

lo 
1' 

2 '  

After transition to the momentum Matsubara frequency representation and identify- 
ing the potentials in (A4) to be Coulombic, each potential line corresponds to: 

where k,  and k, designate the wave vectors of the two incoming electrons, char- 
acterized by Green function lines, into each vertex. The estimate of the potential 
V,,(lq + k, - k21) by approximate potentials Vtt(q)  or VZv(q), given by 

finally leads to the Hubbard' or Geldart-Vosko local-field corrections', respectively. 
By the use of the k,  and k,-independent potentials (A6) instead of (A5), each "bubble" 
in (A4) of the order n splits simply into two contributions in Fourier space: 

C-hVbe(q)I" * CnE,'"(q, Q v ) I n f l  

with Vb,(q) = Vy:(q) or V:"(q), respectively. Here, n denotes the potential line number 
(n = 0 . .  . co). Thus, one obtains for the electron-electron polarization function after 
analytic continuation (Q, + w)': 

Inserting (A7) into the definition (14) and treat the static case (w = 0) as mentioned 
above, the electron polarizability according to Hubbard' or Geldart and Voskog is 
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114 K. SCHMIDT. W. D. KRAEFT AND N. H.  MARCH 

readily obtained, which accounts for electron exchange effects via the corresponding 
local-field corrections g e ( q )  = g:”(q) or gyv(q), respectively: 

with 

and 

Note, that in RPA ge(q )  = 0, and with T = OK the polarizability (A8) is reduced to 
the Lindhard” one. 

In principle, local-field corrections that include also electron correlation effects can 
be derived in the same manner as was demonstrated for the Hubbard’ or Geldart 
and V O S ~ O ’  one. This implies, however, to choose at least the Vs-approximation’O 
for the electron self energy 

Ee( 1‘2’) z ih Vie( 1’2’)Ge( 1’2’) = G 
1 ’  2 ’  

instead of the Hartree-Fock approximation (Al) .  
In contrast to the electrons, the liquid metal ions behave as classical particles. 

Therefore, one has to choose approximations for the ion self energy (5) which go 
beyond the Hartree-Fock approximation. For this purpose we start with the 
Vs-approximationlo just cited 

Ti( 1’2’) z EyF( 1’2’) + EMW( 1’2’) = ih Vfi( 1’2)G;( 1‘2’), (A1 1) 

the vertex function of which is given by 

XMW denotes the ionic Montroll-Ward contribution. Neglecting the first term of 
the right-hand side of (A12), i.e. dropping contributions to the vertex function of 
higher order than linear in Vj,, yields the following equation for the ion-ion 
polarization function nij: 
n,,(4343) = -Gi(43)Gi(34) + ih J d l ’  d2‘ Gi(41‘)V~i(l’2‘)(’)ji(l’3 2’3)Gi(2’4). (A13) 

0 
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ION-ION POTENTIAL FOR LIQUID METALS 115 

Namely, taking the simplest approximation for nii in (3), i.e. RPA for ideal 
noninteracting particles 

nii(4343) = - Gy(43)GF(34), (A 14) 

from Eq. (2) it follows (see 17) that 

d4 d5 Vfi(1'4)Vfi(52') 
6 V!i( 1'T) 
6 Uf'f( 3 3) 

* [GP(53)@(34)G!(45) + GF(54)GF(43)G;(35)] (A1 5) 

which is already a quadratic function in Vqi. Inserting (A15) into (A12) yields 
therefore a contribution to the vertex function quadratic in V;i. 

The iterative solution of the integral Eq. (A13) is similar to (A4): 
1' 

2 '  

(A 16) -4& - ... 

2 '  2" 

Now, one should insert (A16) into the equation for the screened ion-ion potential 
(2) and solve the resulting equation. However, in order to obtain a compact expression 
for nii from (A16) in the form of (A7), one has to estimate the screened potentials VSi 
in (A16) by a suitable potential as was done for the unscreened electron-electron 
potentials (A5). Therefore, we propose to replace the screened ion-ion potentials in 
(A16) after transition to the momentum Matsubara frequency representation by static 
Debye potentials: 

Now, k,  and k, denote the wave vectors of the two incoming ion Green function 
lines into each vertex of (A16). In analogy to the Hubbard local-field correction' for 
the electrons, we approximate the potential (A17), in the next step, by the following 
k, and k,-independent potential: 

which has a formal similarity to the corresponding Geldart-Vosko expression (A6). 
Using the modified screened potential (A18) in (A16), each 'bubble' of the order n 
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splits into two contributions in Fourier space: 

where n denotes again the potential line number (n = 0 . .  . x). In this way, we obtain 
the desired compact equation for the ion-ion polarization function from (A16) after 
analytic continuation (Qr .+ w) and in the static case (w = 0): 

Inserting (A19) into (14) yields finally an ion polarizability which takes care of 
correlation effects between ions in the Montroll-Ward approximation: 

Here, we have introduced the following definition for the ion local-field correction 
gi(q) in analogy to (A9) or (A10): 
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